Products and Services of the National Geodetic Survey

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service

Important Addresses and Telephone Numbers

Inquiries and comments Chief, National Geodetic Survey.....(301) 443-8600 Charting and Geodetic Services National Ocean Service, NOAA Rockville, Md. 20852

Geodetic publications(301) 443-8316 Chief, National Geodetic Information Center (N/CG17x2) Charting and Geodetic Services National Ocean Service, NOAA Rockville, Md. 20852

Federal Geodetic Control Committee.....(301) 443-8143 Federal Geodetic Control Committee (N/CG1x5) 6001 Executive Boulevard Rockville, Md. 20852

Products and Services of the National Geodetic Survey

John F. Spencer, Jr. James E. Stem William W. Wallace

National Geodetic Survey

(Supersedes NOAA Technical Memorandum NOS NGS 5, National Geodetic Survey data: availability, explanation, and application, by Joseph F. Dracup, 1976)

Rockville, Md. 1983

U.S. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary

National Oceanic and Atmospheric Administration John V. Byrne, Administrator

National Ocean Service Paul M. Wolff, Assistant Administrator

Office of Charting and Geodetic Services R. Adm. John D. Bossler, Director

QB 281 .S7 1983

QB 281 .S7 1983 Spencer, John F. Products and services of the National Geodetic Survey DUE WETTA PONDEUL MAY 9 1990

Mention of a commercial company or product does not constitute an endorsement by the National Oceanic and Atmospheric Administration. Use for publicity or advertising purposes of information from this publication concerning proprietary products is not authorized.

For sale by the National Geodetic Information Center, NOAA, Rockville, Md. 20852

Contents

 MCE brockum and MORA. Geolegic Now I couldot of mirk multi-minor equinees and State geodetic 		
	AROPLONG BUILDING	

Abstract	1
Introduction	2
Horizontal geodetic information— latitude, longitude, and azimuth	3
Vertical geodetic information— elevations	7
Indexes to horizontal and vertical geodetic control information—geodetic network diagrams	12
Astronomic information— latitude, longitude, azimuth, and deflection of vertical	14
Satellite surveying information	16
Gravimetric information	16
Calibration standards for electronic distance-measuring instruments	19
Computer programs for geodetic applications	21
Federal Geodetic Control Committee Specifications— survey specifications and data base formats	23
Crustal movement information	24
Polar motion information	25
Geodetic literature and archival record services	26
Geodetic products and services information	27
Geodetic extension service— technology transfer and consultation	29
Special purpose geodetic surveys	30
Future products	30

Exhibits

1.	Alphabetic index to Horizontal	
	Control Data	4
2.	Horizontal Control Data	
	(new format)	5
3.	Horizontal Control Data	
	(old format)	6
4.	Alphabetic index to Vertical	
	Control Data	8
5.	Vertical Control Data	
	(new format)	9
6.	Vertical Control Data	
	(old format—elevations) 10	0
7.	Vertical Control Data	
	(old format—descriptions) 17	1
8.	Astronomic station data1	5
9.	Satellite surveying data (Doppler) 12	7
10.	Gravimetric data18	B
11.	Calibration base line data 20	0
12.	A selection of Federal Geodetic	
	Control Committee publications23	3
13.	Publications documenting crustal	
	movement investigations24	4
14.	Polar motion data and Universal	
	Time	5
15.	Examples of NGS publications20	6
16.	NGS brochure and NOAA	
	Geodetic News 22	7
17.	Location of mark maintenance	
	engineers and State geodetic	
	advisors28	B

Geodetic control diagram.....back pocket Index of geodetic control

diagrams...... back pocket State triangulation diagram.....back pocket Triangulation (coastal) diagramback pocket State leveling diagramback pocket Map showing status of horizontal control......back pocket Map showing status of vertical controlback pocket

Abstract

San icon National Company of Firsteric The Alignment of the Alignment of Alignme

The National Geodetic Survey disseminates a variety of products to users of geodetic information. These include horizontal and vertical geodetic control network data and diagrams; gravimetric, astronomic, and satellite surveying information: calibration base line data: geodetic computer programs; geodetic survey specifications: geodetic data base specifications and formats: and polar and crustal motion information. In addition, NGS publishes technical reports and publications, provides geodetic reference library and information services. an extension service to aid in technology transfer and innovation with State and local governments, and special purpose geodetic surveys to support scientific and engineering projects of other agencies and institutions.

Constitution are block and by each old of all the constraints and the prime of the source of the second second second second to be the office of the production books for the bellion is the production by the constraints determined second the bellion is been all the second second the bellion is been all the second second second sector second second second second second second second second the become by the second second second

Construction and estimate data was part or blacks on any next stops, the radius, or allowers a complete control station in Barded articles of the control, that or provide use any one available has opporte recording adhered barded yet publicated. Position are descriptions also because any formal barded in the restriction control or survey

Introduction

A static miteritation 1 minute barries in the second static and second secon

The National Geodetic Survey (NGS), a component of Charting and Geodetic Services, National Ocean Service (NOS) in the National Oceanic and Atmospheric Administration (NOAA), is responsible for developing and maintaining the National Geodetic Reference System, as defined by the National Networks of Geodetic Control. These networks consist of approximately three-quarters of a million precisely positioned points, known as geodetic control points. The points provide the base of reference to correlate longitude, latitude, elevation, scale, and orientation throughout the Nation for communication. transportation, and defense systems; boundary and property surveys and land records systems; public utilities; mapping and charting; and a variety of other scientific and engineering applications.

NGS conducts field surveys and research and development activities to improve the collection and dissemination of geodetic data, as well as to improve the understanding of dynamic Earth processes. NGS also provides Federal leadership in the establishment of specifications and standards for conducting geodetic surveys, development and application of new surveying instrumentation, and assistance to State, county, and municipal agencies through cooperative programs. Many of these agencies also submit survey data to NGS which eventually become part of the national networks.

Horizontal Geodetic Information

Latitude, Longitude, and Azimuth

Published horizontal geodetic information consists of geographic positions (latitude and longitude), State plane coordinates, Universal Transverse Mercator grid coordinates, azimuths, and descriptive location and mark condition information for approximately one-quarter-million stations in the horizontal control networks of the conterminous United States. Alaska, Hawaii, and Puerto Rico. Most data are derived from precise field surveys using conventional triangulation, traverse, and trilateration methods. The surveys are adjusted to either the North American Datum (NAD) of 1927, Old Hawaiian Datum, or Puerto Rican Datum, Horizontal control products are usually presented in booklet form for 30' x 30' quadrangle areas, or for congested regions in 15' or 7¹/₂' quadrangle areas. In some areas of Alaska, data are in 1°x 1° units due to the sparsity of control. The 30-minute quadrangles are identified by a six-digit number, successively depicting degrees of latitude, longitude, and quadrants of the 1° quadrangle. Exhibit 1 is an alphabetic index included in the quadrangle booklet. Exhibit 2 shows the published data for one horizontal control station in the automated format. Exhibit 3 illustrates the information in the manual format which will be gradually replaced in the future by the automated format.

Coordinate and azimuth data are also available on magnetic tape, microfilm, or microfiche. Complete control station information is available on these media for limited areas of the country. Horizontal geodetic data are also available for projects recently adjusted but not yet published. Position and descriptive information similar to that found in the published data are issued by survey project.

US DE NOS - Rockv	PARTMENT OF COMMERCE - NOA - NATIONAL GEODETIC SURVEY /ILLE MD 20852 - JUL 1980			AI HORI NORTH	PHAE ZON1	BETIC TAL C ERICA	INDEX ONTROL N DATU	TO DATA M 192	7				QUAD CONTR	N27080400 OL DIAGRAM	NG 1	7 - 2
PAGE	STATION NAME	YEAR I ESTAB	RECOV	STAT	L A	ORDE	R AND DE	GEODE	TIC	POSITION ITUDE	ELEV (METERS)	GE O I I HG T	D OTHI CONT	ER ROL QUAD	OSN	ST
176	ADAMS	1960	1961G	TCT	27 3	38 24	. 27127	N 80	37	42.172776	10.0	6.	9	N27080424	0001	FL
80	AIRWAY BEACON 14	1934	1948X	LOW	27 4	9 33	. 19200	1 80	30	12.032006				N27080412	0002	FL
23	AIRWAY BEACON 15	1934	1949X	LOW	27 5	57 53	.74900	N 80	34	09.40800				N27080411	0010	
44	AISS BM	1962		ZND	2/ 5	0/ 23	.64/58	N 80	33	30.5/9156	1 12.56	0.		N27080411	0029	
215	BL 4 FL 2	1960		TCT	2/ 5	0 41	. 5//11	N 80	58	16.5/9906	23.04	0.	8 V	N27080412	0002	
214		1960		TCT	2/ 4	0 02	.94/84	N 80	55	10.549/04	0.44	0.	2 V	N27080412	0007	
210	DENCH MARK U 197	1960		TCT	27 1	6 07	. 36307	N SU	20	10.00/090		6	5 V	N2708044J	0000	EL EL
194	DILLE	1960		151	27 1	0 02	. 90010	N SU	33	10.349/06	0.44	6	0	N27080472	0007	S FI
75	REDOKSIDE	1900	10764	TCT	27 4	6 02	. 40304	N 80	40	40.90200M	7 95	6	5 V	N27080412	0001	E EL
07	PROOKSIDE AZ MY	1956	19707	ZND	27 4	6 02	04305	N 80	22	31 578734	7 33	6	5 V	N27080412	0017	P FI
95	REDOKSIDE PM /	1956	1976X	2 ND	27 4	6 02	93631	N 80	33	11 808844	7 68	6	5 V	N27080412	0011	FI
89	BROOKSIDE RM 5	1950		TIT	27 4	6 02	90820	N 80	33	10 138276	7 75	6	5 V	N27080412	0007	FL
49	CENTRAL BORE TRAV	1962		ZND	27 5	7 77	. 77897	N 80	33	46 691706	7.14	6.	1 V	N27080411	0035	5 FL
46	CENTRAL PIER 1	1962		2ND	27 5	7 74	.04385	N 80	33	31 47264	8.77	6.	1 V	N27080411	0031	FL
47	CENTRAL PIER 2	1962		1ST	27 5	7 22	.99647	N 80	33	29.170526	8.77	6.	1 V2	N27080411	0027	FL
43	CENTRAL PIER 3	1962		ZND	27 5	57 20	.95202	N 80	33	30.350056	8.71	6.	1 V	N27080411	0028	S FL
47	CENTRAL PIER 4	1962		ZND	27 5	57 21	. 99934	N 80	33	32.652194	8.72	6.	1 V	N27080411	0032	FL
45	CENTRAL PMSS	1962		1 S T	27 5	57 22	. 49796	N 80	33	30.911356	8.71	6.	1 V	N27080411	0030) FL
10	FARM	1930 1	9480	3RD	27 5	5 14	.29400	N 80	30	49.79900k	2	6.	1	N27080411	0005	5 FL
131	FELLSMERE ATT CO MICRO-WAV	E E														
	T	OWER 1960		LOW	27 4	5 02	. 88775	N 80	37	40.930804	1			N27080413	0001	FL
91	FLEMING	1960		TCT	27 4	8 46	.36617	N 80	31	27.388876	8.00	6.	4 V	N27080412	8000	3 FL
184	FORT DRUM MICRO WAVE LINK	RML														
	SI	TE 4 1961		LOW	27 3	51 39	. 55192	N 80	46	52.327146				N27080432	0001	FL
185	FORT DRUM US IMMIGRATION				13.1											
	CONTROL T	OWER 1961		LOW	.27 3	32 29	. 13736	N 80	49	21.450706				N27080432	0002	2 FL
12	GRANT	1930 1	971G	ZND	27 5	5 15	.79000	N 80	31	10.345006	0.80	6.	1 V	N27080411	0006	5 FL
16	HOG	1930 1	971P	3RD	27 5	8 35	. 53200	N 80	31	38.746006	1 1	6.	0	N27080411	8000	3 FL
179	INDIAN	1960	963G	TUI	21 3	58 50	. 40994	N 80	45	03.562046	10.5	7.	1	N2/080451	0001	I FL
8	ISLE	1930 1	971G	3RD	21 5	07 05	. 48500	N 80	30	56.61800k	0	6.	0	N27080411	0004	+ FL
155	I95 73 A01	1973		ZND	2/ 5	8 19	. 18/62	N 80	51	04.3/8106	16.33	6.	8 V	N27080421	0003	5 FL
158	195 73 A02	1973		ZND	2/ 3	10 10	.) 2 20	N 80	51	24.9889/6	9.29	6.	/ V	N27080421	0005	
160	195 73 A03	1973		ZND	2/ 3	9 44	. 41848	N 80	51	55.4/285k	9.4/	6.		N27080421	0006	
162	195 /3 AU4	1973		ZNU	2/ 4	0 11	. 00400	N 80	51	49.9/8556		0.	/ V	N27080421	0007	
164	195 73 AUS	19/3		ZNU	2/ 4	2 0 2	55700		22	00.22002k		0.		N27080421	0000	
166	195 75 AUG	19/3		2 N D	27 4	2 55	0/761		22	27.1/777	0.94	0.		NZ7080421	0009	
168	195 /3 AU/	19/3		ZND	27 4	7 / 9	. 04201		22)/.14///M	0.90	0.		NZ7080421	0010	
170	195 73 A00	1973		2 ND	27 4	6 23	37968	N 80	32	54 45514L	9.04	6	6 V	N27080421	0011	
110	195 75 AU9	1975		2 N D	27 4	5 07	00777	N 80	32	06 11368	9.00	0.	5 V	N27080421	0012	
100	19J 7J ATU 105 73 A11	1973		2 N D	27 6	6 00	70280	N 80	33	04 819756	1 15 71	6	5 V	N27080412	0015	7 FL 8 El
11/	105 73 A12	1073		2 ND	27 1	6 02	36577	N 80	22	37 976834	8 81	6	5 V	N27080412	007	
115	105 73 413	1973		ZND	27 4	6 02	37115	N 80	37	58 064874	0.01	6	5 V	N27080412	0.021	
119	195 73 414	1973		2 ND	27 1	6 02	77064	N 80	34	37 225604	8 / 3	6	6 V	N27080412	0.022	
121	105 73 415	1973		2ND	27 4	6 01	65569	N 80	35	08 513654	7 74	6	6 V	N27080/12	0024	A EL
120	195 73 416	1973		2 N D	27 4	6 01	90327	N 80	35	36 377324	7 05	6	6 V	N27080412	0.030	D EL
106	105 73 417	1973		2 N D	27 4	6 55	98666	N 80	33	00 690904	8 57	6	5 V	N27080412	001	7 51
100		5		LIVU	- / 4				55	00.070706	0.12	0.		112/000412	0017	L L

Exhibit 1.—Alphabetic index to Horizontal Control Data.

P 19

NOS	DEPARTMEN 5 - NATION KVILLE MC	NT OF C NAL GEO D 20852	OMMERCE DETIC S - JUL	- NOAA Survey 1980		PR	HORIZO NORTH A DJECT AC	NTAL C MERICA CESSIC	CONTROL DAT AN DATUM 19 DN NUMBER 1	A 27 2647			() () 	DUAD N. Contro L-IND	Z7080431 L DIAGRAM IAN RIVER	PAGE 18. OSN 0003 ING 17-2 COUNTY
HOR	ZZONTAL (CONTROL	STATI	DN: BLUE												
GEO	DETIC POS	SITION	DATA				STAT	ION IN	FORMATION-							
		LATITU LONGIT AZIMUT	DE: UDE. H 1:	G MIN SECO 27 44 05.4 80 48 43.9 127 53 37.3)NDS 40364N 93253W 3 FROM	SOUTH		TYPE: OBSER ADJUS AZIMU	STED BY NAT	R TRIA US CO IONAL ICE OBJ	GEODE	TION ND GE TIC S : KE	ODETI URVEN	C SUR IN 1936	VEY (NOW 979	NOS) IN 1
		ELEVAT	ION:	9 METER 29.5 FER	RS			ELEVA	ATION SCALE	D FROM	ТОРС	GRAPH	IC MA	P		
		GEOID	HEIGHI:	6.9 ME	IERS											
STA	TE PLANE	AND UN	IVERSA	TRANSVER	SE MERCA	TOR CO	ORDINAT	E SYST	EMS							
		Х		Y	X/EAST	ING	Y/NORTH	ING	POINT SCAL	E COM	VERGE	NCE	GRID	AZIMU	TH 1 GRI	D AZIMUTH
GR	RID ZONE	FEET		FEET	METER	RS	METER	S	FACTOR	DEC	6 MIN	SEC	DEG	MIN SI	EC DE	G MIN SEC
FL-	TM E	560748	.95 17	236296.47	170916	. 621	376823	.917	0.99994541	+ 0	05 1	4.6	127	48 22	.6*	
U	JTM 17				518509	. 999	3067672	.775	0.99960423	+ 0	05 1	4.6	307	48 22	. 6 *	
U	JTM 18				-73435	.216	3081224	. 568	1.00366140) -2	42 4	4.2	310	36 21	. 5 *	
										* C A L	TION	- ARC	- TO - 0	HORD	CORRECTIO	N ASSUMED
STA	ATION DESI	CRIPTIC	N													
	SANIZATION	NS MARK	: US (CHIEF OF	GEODETIC PARTY:	SURVE	REACHE	NOS) D BY:	LIGHT TRU	ILK	H	EIGHT	OF T	ELESC	OPE: 3	5 METERS
ORC	in ocochie	0201 1	,					0 0.1		C N		ACK		00 11	10 00 1111	
ORC			- TYDE	OF MARK			SETTI	NG/LAM	NDMARK TYPE						MAGNE	TIC PROPE
ORC YEA	DE MARK-		TIFE									CNT			UNKNO	H N .
ORC YEA	DE MARK SURFACE	E	TRIANG	STA DISK	SET	INTO	THE TOP	OF A	SQUARE LON	ICREIE	MUNUM	ICINI				
	DE MARK SURFACE UNDERGE	EROUND	TRIANG	STA DISK DISK	SET	INTO INTO	THE TOP	OF AN	IRREGULAR	MASS	OF CC	NCRET	E		UNKNO	WN
	DE MARK SURFACE UNDERGE REFEREN	E ROUND NCE	TRIANG SURVEY SURVEY	STA DISK DISK DISK	SET SET SET	INTO INTO INTO	THE TOP THE TOP THE TOP	OF AN OF AN	SUUARE LUN IRREGULAR SQUARE CON	MASS	OF CC MONUM	NCRET	E		UNKNC	WN
ORC YEA COC D04 D09 D11	DE MARK SURFACE UNDERGE REFEREN REFEREN	E ROUND NCE NCE	TRIANG SURVEY SURVEY SURVEY	STA DISK DISK DISK DISK	SET SET SET SET	INTO INTO INTO INTO	THE TOP THE TOP THE TOP THE TOP	OF AN OF AN OF A	SOUARE LON IRREGULAR SOUARE CON METAL PIPE	MASS ICRETE DRIVE	MONUM OF CC MONUM	NCRET IENT O THE	E GROL	IND	UNKNC	WN
0RC YEA COC D04 D09 D11	DE MARK SURFACE UNDERGE REFEREN REFEREN	E ROUND NCE NCE - REFER	TRIANG SURVEY SURVEY SURVEY	STA DISK DISK DISK DISK BJECT	SET SET SET SET	INTO INTO INTO INTO	THE TOP THE TOP THE TOP THE TOP	OF A OF A OF A OF A	SOUARE LON IRREGULAR SOUARE CON METAL PIPE	MASS ICRETE DRIVE	OF CC MONUM N INT	NCRET IENT O THE	E GROL	JND	UNKNC AGNETIC P	WN
0RC YEA COC D04 D09 D11	DE MARK SURFACI 4 UNDERGI 9 REFEREI 1 REFEREI CODE	E ROUND NCE NCE - REFER AN	TRIANG SURVEY SURVEY SURVEY RENCE OF	STA DISK DISK DISK DISK BJECT	SET SET SET SET HEADI	INTO INTO INTO INTO NG	THE TOP THE TOP THE TOP THE TOP	OF A OF A OF A OF A	SOUARE LON IRREGULAR SOUARE CON METAL PIPE STANCE	DRIVE	MONUM OF CC MONUM N INT - DIF 000 C	ENT O THE ECTIO	GROU N	UND M/ UNI	UNKNC AGNETIC P KNOWN	WN
ORC YEA COC D04 D09 D11	DE MARK SURFACI 4 UNDERGI 9 REFEREI 1 REFEREI CODE	E ROUND NCE NCE - REFER AN E RM 2	TRIANG SURVEY SURVEY SURVEY ENCE OF	STA DISK DISK DISK DISK BJECT	SET SET SET HEADII	INTO INTO INTO INTO INTO	THE TOP THE TOP THE TOP THE TOP	0F A 0F A 0F A 0F A DIS	SQUARE LON N IRREGULAR SQUARE CON METAL PIPE STANCE	ILRETE MASS ICRETE DRIVE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NCRET IENT O THE RECTIO 0 00. i Zi	E GROL N	UND M/ UNI UNI	UNKNC AGNETIC P KNOWN KNOWN	WN
	DE MARK SURFACI 4 UNDERG 9 REFEREI 1 REFEREI CODE 009 KEN 009 BLU 009 BLU	E ROUND NCE NCE - REFER AN E RM 2 E RM 1	TRIANG SURVEY SURVEY SURVEY RENCE OF	STA DISK DISK DISK DISK BJECT	SET SET SET SET HEADI NW W	I N T O I N T O I N T O I N T O N G	THE TOP THE TOP THE TOP THE TOP THE TOP 97.7 101.9	0F A 0F A 0F A 0F A DIS / FEEI 2 FEEI	SUUARE LON N IRREGULAR SOUARE CON METAL PIPE STANCE I 29.802 M J 31.066 M	TRS	MONUM OF CC MONUM N INT - DIF 000 C 016 1 312 2	NCRET IENT O THE RECTIO 0 00. i 2 i 28 48	E GROL N 0	UND MJ UNI UNI UNI	UNKNC AGNETIC P KNOWN KNOWN KNOWN	WN ROPERTY
	DE MARK SURFACI 4 UNDERG 9 REFERE 1 REFERE 1 REFERE 009 KEN/ 009 BLU 009 BLU 011 SEC	E ROUND NCE NCE - REFER AN E RM 2 E RM 1 COR GL	TRIANG SURVEY SURVEY SURVEY RENCE OI	STA DISK DISK DISK DISK BJECT	SET SET SET HEADI W W	INTO INTO INTO INTO NG	THE TOP THE TOP THE TOP THE TOP THE TOP 97.7 101.9 IM 0.15	OF A OF A OF A OF A DIS / FEET MI	SUUARE LUN N IRREGULAR SOUARE CON METAL PIPE STANCE I 29.802 M T 31.066 M	TRS	OF CC MONUM N INT - DIF 000 C 016 I 312 2 320 4	NCRET IENT O THE RECTIO 0 00. i 2 i 8 48 9 38.	E GROL N 0	UND UNI UNI UNI UNI	UNKNC AGNETIC P KNOWN KNOWN KNOWN KNOWN	WN ROPERTY
	DE MARK SURFACI 9 REFEREN 1 REFEREN 2009 KEN/ 2009 KEN/ 2009 BLUE 2011 SEC	E ROUND NCE NCE - REFER AN E RM 2 E RM 1 COR GL BLUE RM	TRIANG SURVEY SURVEY SURVEY RENCE OF	STA DISK DISK DISK DISK BJECT	SET SET SET SET HEADI. NW W	INTO INTO INTO INTO NG ESTI	THE TOP THE TOP THE TOP THE TOP THE TOP 97.7 101.9 IM 0.15	OF A OF A OF A OF A DIS / FEEI MI	SUUARE LUN N IRREGULAR SOUARE CON METAL PIPE STANCE I 29.802 M T 31.066 M	TRS	MONUM OF CC MONUM IN INT 000 C 016 I 312 2 320 4	NCRET IENT O THE ECTIO 0 00. i 2 i 8 48 9 38.	E GROL N 0	UND UNI UNI UNI UNI	UNKNC AGNETIC P KNOWN KNOWN KNOWN KNOWN	WN ROPERTY

THE STATION IS ABOUT 14 MILES SOUTHEAST OF KENANSVILE, AND / MILES EAST OF YEEHAW JUNCTION IN THE SOUTHEAST 1/4 OF SECTION 35, T. 31 S., R. 35 E., ON THE ROCKING M RANCH OWNED BY MR. FONOERN MITCHELL. IT IS 50 FEET SOUTHEAST OF A 10 INCH PINE TREE, 44 FEET SOUTHWEST OF A 14 INCH PINE TREE, 26 FEET NORTHEAST OF AN EAST GATE POST, 18 FEET NORTH OF AN EAST-WEST WIRE FENCE, AND 2 FEET NORTH OF A WITNESS POST. THE MONUMENT PROJECTS 5 INCHES AND THE DISK IS STAMPED BLUE 1960.

TO REACH THE STATION FROM THE JUNCTION OF U.S. HIGHWAY 441 AND STATE ROAD S-523 IN KENANSVILLE, GO SOUTH ON HIGHWAY 441 FOR 9.9 MILES TO A SIDE ROAD LEFT AND LARGE SIGN ON LEFT ROCKING M RANCH. TURN LEFT AND GO EASTERLY ON A SAND ROAD FOR 1.1 MILES TO BRIDGE OVER BIG LOLLY CREEK. CONTINUE EASTERLY ON THE SAND ROAD FOR 4.5 MILES TO A SIDE ROAD RIGHT, ABOUT 125 FEET SOUTH OF THE ROCKING M RANCH HEADQUARTERS. TURN RIGHT AND GO SOUTH ON TRACK ROAD FOR 0.8 MILE TO A SIDE ROAD RIGHT ABOUT 0.15 MILE BEFORE REACHING ALUMINUM GATE. TURN RIGHT AND GO WESTERLY, SOUTHWEST, ANO SOUTH ON A TRACK ROAD FOR 1.4 MILES TO A BOARD GATE. PASS THROUGH GATE AND CONTINUE SOUTHERLY ON A TRACK ROAD FOR 0.35 MILE TO THE STATION ON THE LEFT.

(CONTINUED ON NEXT PAGE)

Exhibit 2.—Horizontal Control Data (new format).

HORIZONTAL GEODETIC INFORMATION

JULY 1967 ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION COAST AND CROOSEC SUBJEY

SLIDELL (Continued)

HORIZONTAL CONTROL DATA SHEET 2 00 2

.

.....

by the Coast and Geodetic Survey NORTH AMERICAN 1927 DATUM

AUAD 300833 CTATICE 1056 LATITUDE 30°CO' TO 30°30' LONGLTUDE 89°30' TO 90°CO' DIAGRAM NI 16-4 MOBILE

DESCRIPTION OF TRIANGULATION STATION Pariah: St Tampany NAME OF STATION SLIDELL 2 State. Insistant CHIEF OF PARTY: R.L.E. Described by: A.A. Brown YEAR: 1953

MOTTL . MEMBERT OF TELEBOOPE ABOVE BTATION MARK 31 METEBO.T NEIGHT OF LIGHT ABOVE STATION MARK 33 La Surface-station mark, DISTANCES AND DIRECTIONS TO AZIMUTH MARK, REFERENCE MARKS AND PRO

	06/7/7	BEABLING	OBISTANCE		DIRECTION			
	BARRINGER Asiswth Mark		feet	matam				
	BARRINGER				00	00	00.00	
L6a	Asiguth Mark	Π.	(0.25	ile)	01	15	37.6	
116	R.M. No. 4	W	154.31-	47.031	02	27	11 '	
La7a	SLIDELL 1930 1934	NE.	13.94	4.249	128	39	43.9	
11a	R.M. No. 3	S.	164.30	50.079	262	45	36 *	

The station is located in the northeast corner of the Slidell High School Athletic Field, 0.2 alle east of U. S. Highway No. 11 on Pennsylvania Ave. It is 17.5 feet south of a trick wall and 16.5 feet west of a brick wall. It is set flush and is stamped SLIDELL 2 1953.

And is stamped SAIDELL 2 1953. A traverse measurement was made and direction taken to triangulation station SIDELL 1930 1934. Reference mark No. 3 is 16 feet east of a goal post and 2.5 feet west of a brick mall. It is set flush and is stamped SLIDELL 2 NO 3 1953. Reference mark No. 4 is 2.5 feet south of a brick mall, set flush, and is stamped SLIDELL 2 NO 4 1953.

The distance between R.M. No. 3 and R.M. No. 4 is 243.6 feet. The asimuth mark is located about 0.05 mile west of U.S. Highway No. 11 and the

Slidell Post Office. It is set directly under a telephone line, 51.5 feet west of the west rail of the New Orleans and Northeastern railroad tracks, 21 feet south of the center of a graveled street and 8 feet south of a railroad tracks, 21 teet South of the center of a graveled street and 8 feet south of a railroad stop sign. It is stamped SLIDELL 2 1953 and projects 4 inches. To reach the station from the Post Office in Slidell, go east on Penneylvania

Ave. for 0.2 mile to the Slidell High School and the station on the right as described.

To reach the azimuth mark from the station, go west on Pennsylvania Ave. for 0.2 mile to U.S. Highway No. 11, cross U.S. Highway No. 11 and continue straight ahead across the railroad tracks for 0.05 mile and the mark on the left as described.

U.S. DEPARTMENT OF CONNERCE - COART AND GEODETIC SURVEY Fora 526 RECOVERY NOTE, TRIANGULATION STATION

NAME OF STATION

SLIDELL 2 SLI DELL Z FLE YEAR: 1953 Brave: Louisiana WPDoucherty YEAR: 1963 County St. Tarmany Parish ENTABLISHED BT Recoveren av.*

Detailed statement as to the fitness of the original description ; including marks found, stampings, changes made, and other pertinent facta: Station and Azimuth mark were recovered in pood condition. Azimuth point cannot be seen at ground from the station at ground due to a brick wall at the station and a railroad embankment at the Azimuth Point.

Peferences are adequate for location. Slidell Municipal Water Tower is no longer visible from Station Slidell 2 at ground due to tree cover.

Come-DC 34314

(Continued)

ADJUSTED HORIZONTAL CONTROL DATA

STINGTIS

			-	
ati.	LOUIS	IANA		

TEAR 1953 LATE POWTCHARPEATH

0-10056.0-13694

FIRLD SPETCH LA 121.130

PIRST

	the second se			
GEODETIC LATITUDE	30 16 49.51498	ELEVATION	3.10	-
GEODETIC LONGITUDE	89 46 42.04177		10.2	1001

WAR STON	STATE COORDINATES THIS											
	EODE	•		0 100 \$ 111 ANGLE								
LA. S.	1702	2,490,814.43	590,166.05	+ 0 46 39								

TO STATION OF ORJECT	GEODETIC AZIMUTH	dune at	cour
AZIMUTH MARK	94 19 08.6	93 32 30	1702

RECOVERY NOTE, TRIANGULATION STATION

NAME OF STATION: SLIDELL 2 1953

ESTABLISHED BY YEAR: STATE: Louisiana BENCH MARK ALSO RECOVERED ev: + John Bickham YEAR: 1965 COUNTY: St. Tammany AIRLINE DISTANCE AND DIRECTION FROM NEAREST TOWN

HEIGHT OF TELESCOPE ABOVE STATION MARK NEIGHT OF LIGHT ARCVE STATION NAME

DISTANCE AND DIRECTIONS TO AZIMUTH	MARK, REFERENCE MA	RKS AND PROMI	NENT OBJECTS	WHICH CA	N BE SE	E #
		015	FANCE	1		
OBJECT	BEARING				DIRECT	OM.
SLIDELL 2 Az. Mk.	1 1 1 1 1 1 1			*		
Reference Mark #4 SLIDELL 1930-34	Ψ.	154.41		1	10	46.1

This station was recovered in good condition in the corner of the Slidell Jr. High School playground, 16.65 feet south of a brick wall, 16.00 feet west of a brick wall, 45.30 feet south of the centerline of Penn. Avenue, 45.95 feet west of centerline of 5th Street, 22.60 feet southwest of the northeast corner of a bpick wall, and 67.80 feet southwest of a fire hydrant.

Station is a standard bronze disk set in a concrete post even with the surface of the ground. Station is stamped Slidell 2 1953.

To reach this station from the Bank of Slidell (on the corner of U.S. Highway 11 and Cousin Street) in Slidell, La., follow U.S. Righway 11 north for 0.63 miles to the corner of Penn. Avenue, thence cast along Penn. Avenue for 3 blocks to the corner of Penn. Avenue and 5th Street to station on south side of Penn. Avenue.

Ref. Marker No. 3 is 2.5 feet west of a brick wall, 164.39 feet southeast of station. Station is even with the surface of the ground. Ref. Marker No. 4 is 2.5 feet south of a brick wall, 154.41 feet west

of station. Station projects 2" above the surface of the ground.

USCOMM-ESSA-ASHEVILLE

Exhibit 3.—Horizontal Control Data (old format).

R

-

Vertical Geodetic Information

Elevations

Published vertical geodetic information consists of elevations above the National Geodetic Vertical Datum (NGVD) of 1929 (formerly Sea Level Datum of 1929), gravimetric values, descriptive location, and mark condition information for more than one-half million bench marks in the Nation's vertical control network. The data are derived from leveling and gravity observations. Most vertical control information is presented in quadrangle booklets using the same system described under "Horizontal Geodetic Information." Exhibit 4 displays an index from a Vertical Control Data booklet, and Exhibit 5, a typical page of information. Some vertical control data are still published in the old format organized by State level lines, and are available only by complete county coverage. Exhibits 6 and 7 depict elevations and station descriptions, respectively, in the old format. Vertical control data for recently adjusted projects that are not yet published are available and issued by survey project.

US DE	PARTMENT OF COMME	RCE - NDAA			ALPHABEI	IC INDEX	10		LAT SPAN	39-30.	IN TO	39-39.	914
NOS -	NATIONAL GEODETI	C SURVEY			VERTICAL	CONTROL	DATA		LON SPAN	76-30	. IW TO	77-00.	WO
ROCKV	/ILLE MO 20852 - A	PR 1982	NAT	IONA	L GEODETIC	VERTICA	L DATUM 192	9	DIAGRAM	NJ 18-	I INDE	X PG	.06
		VEAD	LAST		FLEVATION			F POSITION	SURFACE	OTHER			
SEQN	DESIGNATION	ESTABLISHED	RECOV	ORO	(METERS)	SOURCE	LATITUDE	LONGITUDE	GRAVITY	CONTRO	DL QUAD	QSN	ST
327	P 304 PA0H	1966B	19666	2ND	121.781	L20778	39-59-43N	76-37-57W	980.117		139076400	13-6	PA
98	P 80	19420	1971N	2ND	201.082	L 10100	39-39-18N	76-32-55W	980, 114		139076400		MD
197	P 82	19420	137 114	2ND	171.855	L10088	39-33-28N	76-53-35W	980,116	1	139076400		MD
225	F 02	19420		200	101 918	1 10088	39-31-55N	76-42-32W	980 124	P	139076400	25 64	MD
4	P 97	1942C 1959D		2ND	107.738	L17361	39-32-01N	76-39-52W	980.120		139076400	33	MD
341	0 112 MOSPC	19670		2ND	255.508	L21359	39-40-49N	76-53-31W	980, 102		139076400	王马	MD
175	0 194	19420	1953N	2ND	198.577	L 10088	39-46-13N	76-46-45W	980.118	1	139076400		PA
293	0 275	19610	100014	2ND	124.550	L18463	39-56-37N	76-44-28W	980,118	1	N39076400		PA
102	0 64 4	19420		2ND	236.247	L 10088	39-35-22N	76-59-58W	980.093		N39076400		MD
99	Q 80	1942C	1971G	2ND	185.121	L 10100	39-40-04N	76-32-30W	980.119		139076400		MD
198	0.82	19420		2ND	239.537	L 10088	39-33-48N	76-52-58W	980.103		139076400		MD
224	0.83	19420	1959G	2ND	97.829	L17361	39-31-35N	76-41-36W	980.122		N39076400		MD
6	0 97	1959B	1967G	2ND	85.918	L17361	39-32-14N	76-38-52W	980.123	1	139076400		MD
342	P 112 MDSPC	19670		2ND	248.611	L21359	39-41-18N	76-53-48W	980.101	1	139076400		MD
174	R 194	1942C		2ND	181.902	L 10088	39-46-56N	76-46-00W	980.124		N39076400	20	PA
292	R 275	1961D		2ND	128.307	L18463	39-56-45N	76-43-14W	980.118		N39076400	15	PA
194	R 64 A	1942B	1980X	2ND	229.902	L10088	39-36-17N	76-59-55W	980.094	- 1	N39076400		MD
252	R 64 B	19420		2ND	161.084	L10088	39-34-16N	76-44-26W	980.118	1	N39076400		MD
118	P 80	19420	1965G	2ND	158.574	L10100	39-37-53N	76-36-54W	980.122	1	139076400		MD
199	R 82	1942C	1970G	2ND	246.331	L10088	39-34-32N	76-52-38W	980.103	-	139076400		MD
222	0.92	19420	1958N	2ND	87.187	L 10088	39-31-01N	76-41-04W	980.123		N39076400	,	MD
242	5 112 MDSDC	19670	100011	2ND	252.791	L21359	39-41-51N	76-54-18W	980.099		N39076400	,	MD
245	S 162 DADH	19428	196 IN	2ND	115 194	L09641	39-59-45N	76-44-06W	980.113	1	N39076400	,	PA
100	5 102 PADR	19420	150114	2ND	232 745	L 10088	39-43-17N	76-52-19W	980, 106		N39076400		PA
173	S 194	1942C		2ND	171.612	L 10088	39-47-26N	76-45-06W	980.125	0.000	N39076400		PA
20.4	5 075 DAOU	10618	19616	2ND	134 718	1 18463	39-56-30N	76-43-06W	980, 117		N39076400	,	PA
291	5 275 PAUH	19420	15010	2ND	236 406	L 10088	39-37-10N	76-59-51W	980.094		N39076400	,	MD
195	5 64 A	19420		2ND	177 287	1 10088	39-35-02N	76-44-23W	980.118	100	N39076400	,	MD
251	5 64 B	19420	10650	200	185 579	L 10100	39-38-15N	76-35-54W	980.117		N39076400	,	MD
200	S 80 S 82	19420	19030	2ND	250.172	L 10088	39-35-16N	76-51-49W	980.104	i i	N39076400)	MD
004	6.00	10420	19596	2ND	109 154	1 17361	39-30-28N	76-40-24	980, 116		N39076400)	MO
221	5 83	19420	19390	2110	241 266	117361	39-40-54N	76-38-49W	980, 116	н	N39076424	0009	MO
26	SEVENTH	19590		2110	257 714	1 18463	39-44-23N	76-39-41W	980 113	н	N39076424	0003	PA
324	SHREWS	19610		ZND	257.714	1 19463	20-44-521	76-20-42W	980 113		N39076400)	PA
322 323	SHREWS AZ MK SHREWS RM 1	1961B 1961C		2ND 2ND	257.533	L18463	39-44-23N	76-39-42W	980.113		N39076400	,	PA
205		106.10		200	258 022	1 18462	39-44-231	76-39-41	980, 113	-	N39076400)	PA
325	STIKEWS KM 2	19010	10420	2110	142 262	106720	39-52-22N	76-51-58	980 113	1	N39076400)	PA
126	SPRING GRUVE	1935B	19420	ZND	207 174	121250	39-42-16N	76-54-45	980 090		N39076400)	MD
344	T 112 MUSRC	19670	10640	ZNU	110 064	1 19460	39-59-024	76-44-07	980 115	1 × 1 × 1	N39076400)	PA
346	1 162	19420	19616	ZNU	118.064	L 10403	39 39-03N	76-51-24	980.104	a second	N39076400		PA
181	180	1942C		ZNU	240,380	L 10088	33-43-31N	10 JI 21W	300.104	and the second second	10000000000	,	

*RESET ELEVATION

Exhibit 4.—Alphabetic index to Vertical Control Data.

PG -- 0008

4.8.1

8

US DEPARTMENT OF COMMERCE - NOAA NOS - NATIONAL GEODETIC SURVEY ROCKVILLE MD 20852 - DEC 1979 VERTICAL CONTROL DATA NATIONAL GEODETIC VERTICAL DATUM 1929 ADJUSTED BY--CGS YEAR--1957 SOURCE--L15467 SEQN--041 QUAD--N34091100 LINE--102 STATE--AR DIAGRAM--NI 15-6 COUNTY--PRAIRIE

 BENCH MARK
 ORDER--1ST
 MONUMENTATION
 QUALITY--C
 APPROX
 LAT
 34-47-04N

 DESIGNATION--MESA RM 1
 ESTABLISHED
 BY--CGS
 YEAR--1920
 POSITION--LON
 091-28-48M

H - ELEVATION				NORMAL
ABOVE NGVD 1929	MODELED BOUGUER	MODELED	NORMAL GRAVITY	GEOPOTENTIAL NUMBER
(NORMAL ORTHOMETRIC HEIGHT)	ANOMALY SIGMA	SURFACE GRAVITY	(1967 FORMULA)	(GPU=KILOGALMETER)
68.265 METERS (223.966 FEET)	~6.2 MGALS 0.5	979.695 GALS	979.715 GALS	66.880 GPUS

 BENCHMARK RECOVERY

 DESIGNATION--MESARM1

 STATE--AR

 COUNTY--PRAIRIE

 OUAD--N340911

 WONUMENT BY--CGS

 RECOVERY BY--CGS

 CONTY--PHORE

 CONTY--PRAIRIE

 OUAD--N340911

 XR--1920

 COP--UNK

 MARK TYPE--REFERENCE MARK DISK

STAMPING--R M 1 MESA 1916 1920 SETTING--CONCRETE POST

LOCATED--1.25 MI WEST FROM THE CITY OR TOWN OF--DE VALLS BLUFF

1.25 MILES WEST ALONG THE CHICAGO, ROCK ISLAND AND PACIFIC RAILROAD FROM THE STATION AT OE VALLS BLUFF, ACROSS THE RAILROAD FROM A LARGE HOUSE, 9 1/2 RAILS WEST OF A ROAD CROSSING, 5 RAILS EAST OF SEMAPHORE 87.5, 94 FEET SOUTH OF THE SOUTH RAIL, 58.8 FEET SOUTHEAST OF TRIANGULATION STATION MESA, 45 FEET NORTH OF THE CENTER LINE OF A GRAVELED ROAD, 20.5 FEET SOUTHWEST OF A TELEPHONE POLE, SET IN THE TOP OF A CONCRETE POST WHICH PROJECTS 0.4 FOOT ABOVE THE GROUND.

US DEPARTMENT OF COMMERCE - NOAA NOS - NATIONAL GEODETIC SURVEY ROCKVILLE MD 20852 - DEC 1979 VERTICAL CONTROL DATA NATIONAL GEODETIC VERTICAL DATUM 1929 ADJUSTED BY--CGS YEAR--1957 SOURCE--L15467 SEGN--042 QUAD--N34091100 LINE--102 STATE--AR DIAGRAM--NI 15-6 COUNTY--PRAIRIE

BENCH MARK DESIGNATION--MESA RM 2 ORDER--1ST MONUMENTATION QUALITY--C APPROX LAT 34-47-03N ESTABLISHED BY--CGS YEAR--1920 POSITION--LON 091-28-47W

H - ELEVATION				NORMAL
ABOVE NGVD 1929	MODELED BOUGUER	MODELED	NORMAL GRAVITY	GEOPOTENTIAL NUMBER
(NORMAL ORTHOMETRIC HEIGHT)	ANOMALY SIGMA	SURFACE GRAVITY	(1967 FORMULA)	(GPU=KILOGALMETER)
68.046 METERS (223.248 FEET)	-6.2 MGALS 0.5	979.695 GALS	979.715 GALS	66.665 GPUS

SETTING--CONCRETE POST

LOCATED--1.25 MI WEST FROM THE CITY OR TOWN OF-DE VALLS BLUFF

1.25 MILES WEST ALONG THE CHICAGO, ROCK ISLAND AND PACIFIC RAILROAD FROM THE STATION AT DE VALLS BLUFF, ACROSS THE RAILROAD FROM THE A LARGE HOUSE, 12 1/2 RAILS WEST OF A ROAD CROSSING, 95.7 FEET SOUTH OF THE SOUTH RAIL, 50 FEET NORTH OF THE CENTER LINE OF A GRAVELED ROAD, 48.3 FEET SOUTHWEST OF TRIANGULATION STATION MESA, 5.7 FEET EAST OF A TELEPHONE POLE, SET IN THE TOP DF A CONCRETE POST WHICH IS 0.1 FOOT BELOW THE TOP OF THE GROUND.

SEPTEMBER 1963

PUBLISHED AND PRINTED BY: U.S. DEPARTMENT OF COMMERCE COAST AND GEODETIC SURVEY WASHINGTON D.C.

VERTICAL CONTROL DATA

by the Coast and Geodetic Survey SEALEVEL DATUM OF 1929 QUAD 461132 MONT. LATITUDE 46°00' to 46°30' LONGITUDE 113°00' to 113°30'

DIAGRAM NL 12-4 BUTTE

LINE 101 (Second-order)

LINE 102 (Second-order)

The field work (L-2048) was done in the summer of 1934 by a done party supervised by A.C.Thorson. super

These elevations are based on a supplementary adjustment of 1947. The field work (L-2692) was done in September 1934 by a party supervised by Curtis LeFever.

These elevations are based on a supplementary adjustment of 1947.

Bench Mark	Adjusted (Meters)	Elevation (Feet)	Bench Mark	Adjusted (Meters)	Elevation (Feet)
M 68	1694.085	5558.010	S 140	1949.918	6397.356
5623 (USGS)	1713.071	5620.300	T 140	1924.532	6314.069
N 68	1754.979	5757.794	U 140	Destr	oyed
P 68	1798.086	5899.220	V 140	1678.398	5506.544
Q 68	1897.520	6225.447	W 140	1634.513	5362.565
6794 (USGS)	2070.188	6791.942	X 140	1605.165	5266.279
R 68	1952.354	6405.348	Y 140	1592.278	5223.999
S 68	1946.042	6384.639	5278 (USGS)	1606.388	5270.291
T 68	1948.304	6392.061	PHILLIPSBURG	1614.153	5295.767
U 68	1962.488	6438.596	5-1 CWA	1537.942	5045.731
V 68 RESET (1956) W 68 X 68 Z 68	1821.390 1772.320 1677.750	6297.847 5975.677 5814.686 5504.418	Z 140 B 141 C 141 D 141	1522.546 1492.623 1475.245 1434.389	4995.220 4897.047 4840.033 4705.991

Exhibit 6.—Vertical Control Data (old format—elevations).

SEPTEMBER 1963

PUBLISHED AND PRINTED BY: U.S. DEPARTMENT OF COMMERCE COAST AND GEODETIC SURVEY WASHINGTON D.C.

LINE 1C1

VERTICAL CONTROL DATA by the Coast and Geodetic Survey SEA-LEVEL DATUM OF 1929

PAGE NO.

1

QUAD 461132 MONT. LATITUDE 46°00' to 46°30' LONGITUDE 112°00' to 113°30' DIAGRAM NL 12-2 EVTTE

DESCRIPTION OF BENCH MARK

State

Counts

5623 (USSS) Designation Mearest toen Quinlan's Ranch Distance and direction from pearest town Conracter of mark Standard disk Established by USGS Detailed description

Montana county Gran te Chief of party At Quinlan's Ranch Leveling date Stamping

At <u>Quinlan's Fanch</u>, Granite County, 700 feet west of the lest corner of the ranchhouse, 305 feet southwest of the south corner of a large sheep barn, 36 feet northeast of an irrigation ditar, and in the top of a boulder. A United States Geological Survey stanjard disk, s arged "5623 MSLA."

DESCRIPTION OF BENCH MARK

State

County

Designation N 68 Nearest town Quinlan's Ranch Distance and direction from nearest town Character of mark Standard disk Established by USC&GS Detailed description

County Grani + Montana Chief of party i.8 miles southeast Leveling date Stamping

It& miles southeast along State Highway 36 from United States Geciogical Survey bench mark 5623 at <u>Quinlan's Ranch</u>. Granite County, 0.6 mile west of the Edwards ranchouse, southwest of the point where Mungas flume empties into a ditch. 207 feet morthwest of a smill rad bridge over a wash, 166 feet north of East Pork Rock Creek, and 10 feet north of the centerline of the highway. A standard disk, stamped "N 68 1934" and set in the top of a concrete post.

DESCRIPTION OF BENCH MARK

Designation	M 68	State Montana	county Granite
Nearest town	Quinlan's Ranch	County	Chief of party
Distance and	direction from nearest town	1.1 miles northwest	Leveling date
Character of	Standard disk		Stamping
Established b	USC&GS		
Detailed deac	riction		

1.1 miles northwest along State Highway 38 from United States Geological Survey bench mark 5623 at <u>Quinlar's Kanch</u>, Granite County, at a gate across the highway, 80 feet south of the south corner of the Gus Irism ranchhouse, 60 feet southwest of a small irrigation ditch, 16 feet southwest of the center of a gate, 12 feet west of a pole fence, and 2.5 feet higher than the highway. A standard disk, stamped "M 68 1934" and set in the top of a concrete post.

DESCRIPTION OF BENCH MARK

Designation F 68	State	Montana	County	Cranite	
Nearest town Quinlan's Ranch	County		Chief of	party	
Distance and direction from nearest town	3.3 miles	southeast	Leveling	date	
Character of mark Standard disk			Stamping		
Established by USC&GS					
Detailed description					

3.3 miles southeast along State Highway 38 from United States Geological Survey bench mark 5623 at <u>Quiniands Ranch</u>, Granite County, C.3 mile southeast of East Fork School, 0.2 mile east of a gate across the highway, 24 feet south of the south edge of the bridge over the inverted siphon of Mungas flume, and 25 feet south of the centerline of the highway. A standard disk, stamped "P 66 1934" and set in the top of a concrete post.

Indexes to Horizontal and Vertical Geodetic Control Information

Geodetic Network Diagrams Indexes to horizontal and vertical geodetic control information, commonly referred to as Geodetic Network Diagrams, graphically depict horizontal and/or vertical geodetic control points. Control points are survey monuments of known position (horizontal) or elevation (vertical), or both, forming a geodetic control network. Inserted in the pocket of the back cover of this publication are reduced examples of network diagrams described in this section. There are nearly 900 diagrams contained in the following series:

Geodetic Control Diagrams depict at a scale of 1/250,000 both horizontal and vertical control for areas of 1° latitude by 2° longitude. In these areas, control has been established by NOAA, the U.S. Geological Survey (USGS), and other Federal, State, and local agencies; and the resultant data have been accepted for inclusion into the National Geodetic Networks. These diagrams are published by NGS and are made available to all cooperating agencies and the general public for a fee, upon request. The diagrams show monumented stations and certain positioned cultural or natural features. Lines depict actual observations. A reduced index for this series of diagrams is included in the back pocket of the cover.

Alaska geodetic control diagrams are depicted at a scale of 1/500,000 and use photo-reduced World Aeronautical Chart bases. A replacement series of 17 diagrams using NOS Sectional Aeronautical Charts (1/500,000 scale) as the base is in production, with the Anchorage diagram being the first published in 1980.

Triangulation Diagrams are issued for each State and depict horizontal control established or adjusted by NGS. The diagram shows monumented points and

INDEXES TO HORIZONTAL AND VERTICAL GEODETIC CONTROL INFORMATION

positioned cultural or natural features. Measured directions and distances are also depicted.

Triangulation Diagrams (coastal areas) are published in certain areas of the conterminous United States, Alaska, Hawaii, and Puerto Rico, using NOS nautical chart bases to depict horizontal and vertical control. Diagrams, with various bases at larger scales, supplement the Triangulation Diagrams in areas where geodetic control is congested such as metropolitan and coastal areas.

Index Maps of Control Leveling are issued for each State, and depict vertical control established or adjusted by NGS. These leveling diagrams show first-order and second-order level lines established in the State.

Network Status Maps—Two diagrams entitled "Status of Horizontal Control, United States" and "Status of Vertical Control, United States" depict the status of these networks. The diagrams for the conterminous United States and Alaska are updated annually.

ILLUSTRATIONS IN BACK POCKET

Astronomic Information

Latitude, Longitude, Azimuth, and Deflection of Vertical Astronomic information includes final results of astronomic latitude, longitude, azimuth, and deflection of the vertical determinations for more than 5,000 stations in the United States and the U. S. possessions. Astronomic information is listed by station and by 30' quadrangle locations. This information is required for the transformation between survey observations and mathematical models representing the Earth. In horizontal control surveys, the data often provide project orientation.

Exhibit 8 shows the printed data elements, including station identifiers (QID/QSN and name), both astronomic and geodetic positions (AST/GEOD, LAT and LONG), a measure of precision (SIG), the meridional component (M.C.) and prime vertical component (P.V.C.) of the deflection of the vertical, and the elevation. Also available, but not illustrated, are tables for the apparent place of Polaris and sidereal time of 0 hour Universal Time for each day of the year.

			Astronomi	c Info	rmat ion						
QID/QSN	ST	STATION NAME	LAT(AST/GEOD)	SIG	M.C.	PD	LONG(AST/GEOD)	SIG	P.V.C.	PD	ELEV(M)
0380772310001	VA	ACADEMY 1934	38 10 28.87	.27		1	77 16 12.21	. 36		1	63.10
			38 10 29.92		- 1.05		77 16 22.56		- 8.14		
0380772310007	VA	ASTRO WEST PIER 1975	38 12 07.63	.13		4	77 22 20.52	.23		2	70.08
			38 12 06.93		0.70		77 22 25.44		- 3.86		
0360824210001	VA	BIG KNOB 1893	36 39 48.68	.50		1	0	.00		0	962.00
			36 39 52.48		- 3.80		82 30 21.76		0.00		
0360771240007	VA	BOONE 1965	36 41 02.15	.27		1	. 77 08 47.22	. 36		1	38.30
			36 41 03.78		- 1.63		77 08 52.97		- 4.61		
0380774140002	VA	BULL RUN 1871	38 52 56.38	.40		2	77 42 17.98	.69		1	419.00
			38 52 53.26		3.12		77 42 12.79		4.04		
0370802220001	VA	CAHAS 1877	37 07 00.46	.50		1	0	.00		0	1038.00
			37 07 01.57		- 1.11		80 00 56.91		0.00		
0360761110002	VA	CAPE HENRY LIGHTHOUSE OLD	36 55 30.32	.50		1	0	.00		0	0.00
			36 55 32.33		- 2.01		76 00 30.52		0.00		
0370763340004	VA	CLAREMONT 1932	37 11 57.43	.27		1	76 59 32.46	. 36		1	35.40
			37 11 58.81		- 1.38		76 59 43.75		- 8.99		
0380782120001	VA	CLARK ERDL 1957	38 18 43.72	.26		1	78 00 06.61	.40		1	324.20
			38 18 44.14		- 0.42		78 00 06.43		0.14		
0380782120005	VA	CLARK MTN 1871	38 18 39.55	.50		1	0	.00		0	329.70
			38 18 40.76		- 1.21		78 00 11.69		0.00		
0370764340065	VA	COLUMBUS 2 1966	37 41 24.65	.27		1	76 53 18.43	.36		1	38.30
			37 41 28.73		- 4.08		76 53 25.36		- 5.44		
0370764320025	VA	CORPORATION 1934	37 30 11.91	.27		1	76 51 58.72	. 38		1	38.10
			37 30 13.82		- 1.91		76 52 04.75		- 4.79		
0380771330003	VA	DAVID 1942	38 34 28.84	.27		1	77 29 42.61	. 40		1	140.00
			38 34 30.06		- 1.22		77 29 45.01		- 1.88		
0360771120006	VA	DORY 2 1966	36 51 05.10	.27		1	77 02 58.37	. 39		1	35.03
			36 51 05.85		- 0.75		77 03 06.44		- 6.06		

Exhibit 8.—Astronomic station data.

ASTRONOMIC INFORMATION

15

Satellite Surveying Information

Gravimetric Information

Exhibit 9 shows information for threedimensional results of satellite Doppler surveys. When the Global Positioning System becomes operational within the next several years, information from this new system will be available. The data consist of point positions in the form of geocentric coordinates (X,Y,Z) and geodetic coordinates (latitude, longitude, and geodetic height). Relative positions in the form of vector base lines (DX, DY, DZ) are available for simultaneously observed points. Data for transforming satellite positional data to other datums (and vice versa) are also available. These other datums include the North American Datum (NAD) of 1927, the World Geodetic System (WGS) of 1972, and the predicted NAD 1983 system. The data are derived from satellite radio observations performed with geodetic tracking receivers.

Exhibit 10 shows gravimetric information, or the local acceleration of gravity. The intensity of gravity can be predicted for any location within the continental United States. These predicted values are available for a user's specific location and elevation. Gravimetric data are usually made available by 1 degree square areas in the form of punched cards, printed output, and magnetic tape. Individual station values and descriptions can be provided by special request.

Current gravimetric data include the following information for each 1°x1° subdivision ("block"): position, elevation, observed adjusted gravity value, free air and Bouguer anomalies, and terrain correction. Gravimetric data are available for more than 1 million points throughout the United States.

*0 DATE: 09/08/82	THE OBSERVATION STRITUM
******	**********
TO N 38 12 6 9291 FIFUATION (6) 70 08 M.	*0 STRAFING ON HARTO SUL CODE STATION NO *
* LONGITUDEO W 77 22 25.4372 GEOID HEIGHT (N) -2.6 M.	*0 *
* DATUMO NAD 1927 ELLIPSOID HT(H=N+h) 67.5 M.	*O CITY OR TOWNO QID OSN *
*O ELLIPSOIDO CLARKE 1866 DATUM FOR N M-R N=O NAD1927	7 *0 CORBINO 038077231 0007 *
* ORDERO SECOND- TRIANG DATUM FOR ELEV NGVD 1929	* 4
* SURVEYED BY NGS , ORDER FOR ELEV	* CUUNIRY STATEPRUV/TERR UTA ZUNE *U
* DATA LOCATION NOIC, NOS, CIO SUORCE UP N EXIKAPULATED-NO:	5 * UNIED STHES VH *
*	* OCCUPATION INFORMATION *
***************************************	**** PERIOD OF OCCUPATION OCC LENGTH OBSEPVED BYO*
* TRANSFORMED DOPPLER COORDINATES	* 7/21/75 THRU 7/26/750 6 DAYS BLM *
*O WGS 1972 COORDINATESO	· • · · · · · · · · · · · · · · · · · ·
* LATITUDE N 38 12 7.2574	*O EQUIPMENTO S/N ECCENTRICITIES (M.) *
* LUNGITUDE E 282 37 33.0486 30 FITTESOTO HT (H)O 32 44 M	*0 PERCEIVEKO 000 N= *000 E= *000 A= *001 *
*O GEOID HEIGHT (N) -37.6 M.O	* SATS OBSERVED: 30190 30200 0 0 0 *
*ODATUM SHIFT (LOCAL MINUS WGS 72)0	*******
* DELTA X 23.77 M.O	*O REDUCTIONO INFORMATION *
* DELTA Y ~160.20 M.	*O REDUCED BYO DATE PROGRAM REJECTION FACTOR *
*O DELTA ZO -180.05 M.O	*U NGSO 3/4/77 NGS-02 3.0 SIGMA *
* APCHTUAL TNEODMATION	
* CAHIER ACCESSION NUM DS 81 TAPE LOCATION	* INPUT USEDO INPUT USED FREEDOM *
* RET023 ROCKWALL-306	* 390 37 759 715 674 *
* SHELF MARK 863 E12466 IBM-FOB-4	*
E12666 IBM-FOB-4	* RESIDUAL CUTOFF ANGLES TIMING BIAS *
* MICROFILM REEL NUM 020806 UNIVAC-FOB-3	* RMS PASSES DATAPTS RMS *
	• • • • • • • • • • • • • • • • • • •
* 2.0DESCRIPTION, RECOVERY NOTES, FICO NGS, C18 AND CAHIER	*O SATELLITOFO DOPPLEOR *
* 3. ADJUSTED GEODETIC CONTROL DATAO NGS, C18	*OFOINT-POSITIONO COORDINATES*
*O 4. SURVEY SKETCHO NGS CAHIER	* AT STATION MARK *
*O 5. STATION SITE SKETCHO NONE	* COORDINATES EST ERR (1 SIG) *
*0 6. PICTURE POINT IDENTIFICATIONO NONE	* X 1097028.88 M78 H. *
	*0 TU ~407/202.07 N.U .21 N. * *0 70 7977111 78 N.O 98 N *
*0 9. GRAVITY ORSERVATIONSO NONE OR DMANTC SAT REC DESK	* LATITUDEO N 38 12 7.2805 .54 N. *
*O 10. OBSTRUCTION SURVEYO NONE	*0 LONGITUDEO E 282 37 34.7886 .72 M. *
*O 11. STATION OBSERVATION LOGSO NGS CAHIER	*0 ELLIPSOID HT (H)0 27.99 H90 H. *
*OREMARKS:	*0 GEOID HT (N=H-ELEV)0 ~42.1 N.0 *
***************************************	****0 *
*O R E M A R K SO:	* ELLIPSUID: WGS 1966 CUURDINATE GRAVITY *
A AFKILICALION:0	* 1/F = 298.25 NUL-9D NUL-10F *

Exhibit 9.—Satellite surveying data (Doppler).

Gravimetric Information

SUPER BLO	DCK NO.	114	I OCAL	BLOCK	NO. 1	1487

RECORD ADDRESS	LAT WLON DEGS DEGS	ELEV(METERS) OBS. GRAV Prime Second Mgal*1000Sig	FAA(MGALS) SIG	BA(MGALS) SIG	TERR. CORR (MGALS) SIG	SRCE T AG F P S	STAT BENCH MARK DESIGNATION
1080199	48.517 103.060	709.4 0.0 2738100	20.30 1.00	-59.00 1.00	0.0 0.0	5183 1 1 0 0	296
1000190	40.000 103.000	699.5 U.U 2750900	25 50 1 00	-52 80 1 00	0.0 0.0		295
1077866	40.072 103.037		16 30 1 00	-60 10 1 00	0.0 0.0	5115 1 1 0 0	293
1077843	48 779 103 157		22 30 1.00	-57.00 1.00	0 0 0 0	5115 1 1 0 0	292
1077840	48.765 103 443	635 2 0 0 2776600	13.70 1.00	-57.30 1.00	0.0 0.0	5115 1 1 0 0	291
1077838	48,982 103,442	609 3 0 0 2799200	8.80 1.00	-59.30 1.00	0.0 0.0	5115 1 1 0 0	290
1077837	48.894 103.004	592.5 0.0 2809300	21.50 1.00	-44.70 1.00	0.0 0.0	5115 1 1 0 0	289
1077836	48.967 103.179	581.3 0.0 2809000	11.30 1.00	-53.70 1.00	0.0 0.0	5115 1 1 0 0	288
1077789	48.663 103.318	695.6 0.0 2756100	20.90 1.00	-56.80 1.00	0.0 0.0	5115 1 1 0 0	287
933628	48.561 103.232	711.0 0.0 2760000	29.20 2.00	-50.20 2.00	0.0 0.0	4086 1 10 0 0	286
933622	48.561 103.076	695.2 0.0 2761300	25.70 2.00	-52.00 2.00	0.0 0.0	4086 1 10 0 0	285
933601	48.879 103.485	694.2 0.0 2787100	22.70 2.00	-54.90 2.00	0.0 0.0	4086 1 10 0 0	284
933600	48.776 103.482	636.6 0.0 2791800	18.90 2.00	-52.30 2.00	0.0 0.0	4086 1 10 0 0	283
933599	48.6/5 103.449	663.6 0.0 2779500	24.00 2.00	-50.20 2.00	0.0 0.0	4086 1 10 0 0	282
933398	48.983 103.419	601.1 0.0 2814200	11.80 2.00	-55.30 2.00	0.0 0.0	4086 1 10 0 0	281
73339/	48.778 103.332	627.3 0.0 2/91/00	12.70 2.00	-53 60 2 00	0.0 0.0	4086 1 10 0 0	280
633595	40.902 103.200	583.2 0.0 2819600	12 60 2 00	-54 40 2 00	0.0 0.0	4000 1 10 0 0	279
933594	40.001 103.312		23 60 2 00	-52 20 2 00		4086 1 10 0 0	270
933593	48 645 103.317		27 60 2.00	-50.40 2.00	0 0 0 0	4086 1 10 0 0	276
933592	48,981 103 112	576 0 0 0 2829600	19.60 2.00	-44.80 2.00	0.0 0.0	4086 1 10 0 0	275
933591	48,778 103 200	708 6 0 0 2776000	25.20 2.00	-54.00 2.00	0.0 0.0	4086 1 10 0 0	274
933590	48,675 103,186	687 3 0 0 2772600	24.40 2.00	-52.40 2.00	0.0 0.0	4086 1 10 0 0	273
933589	48.880 103.109	612.2 0.0 2812300	22.60 2.00	-45.90 2.00	0.0 0.0	4086 1 10 0 0	272
933588	48.778 103.067	723.7 0.0 2780900	34.70 2.00	-46.20 2.00	0.0 0.0	4086 1 10 0 0	271
933587	48.763 103.068	721.8 0.0 2780100	34.60 2.00	-46.00 2.00	0.0 0.0	4086 1 10 0 0	270
933586	48.720 103.056	710.2 0.0 2778500	33.30 2.00	-46.10 2.00	0.0 0.0	4086 1 10 0 0	269
933585	48.676 103.012	698.6 0.0 2776800	31.90 2.00	-46.10 2.00	0.0 0.0	4086 1 10 0 0	268
933562	48.560 103.342	693.1 0.0 2764800	28.70 2.00	-48.70 2.00	0.0 0.0	4086 1 10 0 0	267
933560	48.546 103.489	644.3 0.0 2772200	22.20 2.00	-49.80 2.00	0.0 0.0	4086 1 10 0 0	266
2192//	48.885 103.010	595.0 0.0 2808100	22.00 1.00	-44.40 1.00	0.0 0.0	35/8 1 1 3 0	265
219276	48.912 103.317	600.5 0.0 2795800	9.00 1.00	-58.00 1.00	0.0 0.0	35/8 1 1 1 0	264
21//58	48.908 103.488	684.3 0.0 2//6500	15.80 1.00	-60.50 1.00	0 0 0.0	355/ 1 1 3 0	263
2410/	48.93/ 103.26/		21 30 1 00	-43 40 1.00	0.0 0.0	1528 1 1 3 0	261
24100	40.930 103.005	5/9./ U.U 2516900	19 00 1 00	-45 60 1 00	0.0 0.0	1528 1 1 3 0	260
24184	40.730 103.040		6 10 1 00	-59 70 1 00	0.0 0.0	1528 1 1 3 0	259
24183	48 937 103 114		14 80 1 00	-50,10 1,00	0.0 0.0	1528 1 1 3 0	258
24182	48 937 103 179	503 1 0 0 2805400	10,90 1.00	-54.10 1.00	0.0 0.0	1528 1 1 3 0	257
24181	48,908 103 355	617 5 0 0 2790000	8.70 1.00	-60.20 1.00	0.0 0.0	1528 1 1 3 0	256
24180	48,908 103,442	674.2 0.0 2778300	14.50 1.00	-60.70 1.00	0.0 0.0	1528 1 1 3 0	255
24179	48.908 103.464	675.7 0.0 2773800	15.50 1.00	-60.00 1.00	0.0 0.0	1528 1 1 3 0	254
24178	48.908 103.486	683.8 0.0 2775800	16.50 1.00	-60.40 1.00	0.0 0.0	1528 1 1 3 0	253
24177	48.908 103.377	632.5 0.0 2786700	10.00 1.00	-60.50 1.00	0.0 0.0	1528 1 1 3 0	252
24176	48.908 103.421	663.2 0.0 2780700	13.50 1.00	-60.50 1.00	0.0 0.0	1528 1 1 3 0	251
24174	48.908 103.311	593.8 0.0 2795000	6.30 1.00	-59.90 1.00	0.0 0.0	1528 1 1 3 0	250
24173	48.923 103.114	581.3 0.0 2808500	14.70 1.00	-50.10 1.00	0.0 0.0	1528 1 1 3 0	249
24172	48.923 103.377	621.8 0.0 2790100	8.80 1.00	-60.60 1.00	0.0 0.0	1528 1 1 3 0	248
24171	48.923 103.399	635.5 0.0 2787600	10.50 1.00	-60.40 1.00	0.0 0.0	1528 1 1 3 0	24/

Exhibit 10.—Gravimetric data.

18

Calibration Standards for Electronic Distance-Measuring Instruments

Calibration standards for electronic distance measuring instruments are provided by calibration base lines (CBL). They are established for the Nation's surveyors and engineers to provide a means to detect constant and scale errors in measuring instruments. Nearly 200 CBL sites have been established by cooperative cost-sharing arrangements between NGS and State and local agencies, universities, and surveying associations. The cooperating organization installs the base line monuments and assists NGS field party personnel in obtaining measurements. A typical CBL configuration consists of four monuments located at 0, 150, 430, and 1400 meters relatively positioned with accuracies approaching one part per million. Available CBL data (Exhibit 11) include the adjusted distances between monuments, a description of the CBL monuments, and where the base line is located. These data are organized by State. Publications describing the use and establishment of calibration base lines are also available.

US DEPARTMENT OF COMMERCE - NOAA NOS - NATIONAL GEODETIC SURVEY ROCKVILLE MO 20852 - APRIL 30, 1982

CALIBRATION BASE LINE DATA BASE LINE DESIGNATION: VIRGINIA TECH PROJECT ACCESSION NUMBER: G15767

QUAD: N370802 PAGE 4 VIRGINIA MONTGOMERY COUNTY

LIST OF ADJUSTED DISTANCES (APRIL 12, 1982)

A				ADJ. DIST.(M)	ADJ. DIST.(M)	STD.
ROM STATION	ELEV.(M) TO ST	NOITATION	ELEV.(M)	HORIZONTAL	MARK - MARK	ERROR(MM)
0	649.385 150	b	647.452	150.0009	150.0133	. 3
0	649.385 430		643.902	429.9545	429.9894	.6
0	649.385 100	00	639.379	999,9378	999.9879	.7
0	649.385 140	00	641.796	1399.9679	1399.9885	. 9
150	647.452 430)	643.902	279.9536	279.9761	.5
150	647.452 100	00	639.379	849,9370	849.9753	.6
150	647.452 140	00	641.796	1249.9670	1249.9798	. 8
430	643.902 100	00	639.379	569.9833	570.0012	.6
430	643.902 140	00	641.796	970.0131	970.0154	.5
1000	639.379 140	00	641.796	400.0296	400.0369	.6

DESCRIPTION OF VIRGINIA TECH BASE LINE YEAR MEASURED: 1981 CHIEF OF PARTY: WJR

THE BASE LINE IS LOCATED ABOUT 10.6 KM (6.6 MI) NORTH OF CHRISTIANSBURG AND ON THE SOUTH SIDE OF BLACKSBURG AT THE VIRGINIA TECH AIRPORT ALONG THE SOUTH WEST SIDE OF THE NORTHWEST-SOUTHEAST RUNWAY.

TO REACH THE O METER POINT FROM THE VIRGINIA TECH AIRPORT CONTROL OFFICE, BEAR RIGHT AND FOLLOW TAXIWAY FOR 0.16 KM (0.1 MI) TO MAIN RUNWAY, TURN RIGHT AND FOLLOW RIGHT SIDE OF RUNWAY FOR 0.32 KM (0.2 MI) TO THE 430 METER POINT 150 FEET SOUTHWEST OF EDGE OF RUNWAY, CONTINUE ALONG RUNWAY FOR 0.24 KM (0.15 MI) TO THE 150 METER POINT 150 FEET SOUTHWEST OF EDGE OF RUNWAY, CONTINUE ALONG RUNWAY FOR 0.16 KM (0.1 MI) TO THE END OF RUNWAY AND THE 0 METER POINT 150 FEET SOUTHWEST UF EDGE OF RUNWAY. TO REACH THE 1000 AND 1400 METER POINTS START MILEAGE BACK WHERE TAXIWAY MEETS MAIN RUNWAY, GO NORTHWEST ON LEFT SIDE OF MAIN RUNWAY FOR 0.32 KM (0.2 MI) TO THE 1000 METER POINT 150 FEET SOUTHWEST OF EDGE OF RUNWAY. BEAR LEFT AND CONTINUE WESTERLY ACROSS RAILROAD GRADE FOR 1.3 KM (0.8 MI) TO THE 1400 METER POINT.

THE O METER POINT IS A STANDARD NGS DISK SET INTO THE TOP OF A ROUND CONCRETE MONUMENT 50.8 CM (20 IN) IN DIAMETER FLUSH WITH THE GROUND LOCATED 46.88 M (153.8 FT) SW FROM THE SOUTH MOST CORNER OF THE SOUTHEAST END OF RUNWAY, AND 45.72 M (150.0 FT) SW FROM THE SOUTHWEST EDGE OF RUNWAY. THE 1400 METER POINT IS A STANDARD NGS DISK SET INTO THE TOP OF A ROUND CONCRETE MONUMENT 50.8 CM (20 IN) IN DIAMETER RECESSED 5 CM (2 IN) BLOW THE GROUND LOCATED 62.79 M (206.0 FT) SE FROM A 4 FT HIGH CONCRETE ASTRO PILLAR, 62.18 M (204.0 FT) SW FROM THE SOUTHWEST CORNER OF THE SOUTHEAST SET OF RUNWAY LANDING LIGHTS, AND 39.38 M (129.2 FT) NW FROM AN ABANDON RAILROAD GRADE. THE BASE LINE MARKS HAVE NOT BEEN STAMPED AT THIS TIME. THE 150, 430, 1000, AND 1400 METER POINTS HAVE CENTER PUNCH HOLES, NOT CROSSES.

THE BASE LINE IS A NORTHWEST-SOUTHEAST LINE WITH THE O METER POINT ON THE SOUTHEAST END. IT IS MADE UP OF THE 0, 150, 430, 1000, AND 1400 METER POINTS.

FOR SITE ACCESS CONTACT MR. BILL BYRNE, AIRPORT MANAGER, POST OFFICE BOX 903, BLACKSBURG, VA. 24060 TELEPHONE (703) 961-6281.

THIS BASE LINE WAS ESTABLISHED IN CONJUNCTION WITH THE CIVIL ENGINEERING DEPARTMENT AT VIRGINIA TECH. FOR FURTHER INFORMATION CONTACT. CIVIL ENGINEERING DEPARTMENT, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061. TELEPHONE (703) 961-7147.

Exhibit 11.—Calibration base line data.

20

Computer Programs for Geodetic Applications

interdent of property of the fraction of the second of the configuration of the second of the second

(ii) angle and technics of furnished by a more set.¹ 2 is logant by freehold thus describered global to the open F is also and Specifications of the Scilling of Specific terring. Onto the Scilling Specific terring.

the restored of another that is for some with these Paper is and particular of the Walsond Goodwic moves Date State (Show Book L

while and research hadness studies and the second s

Computer programs for the geodetic applications described in this section are available on 9-track tapes. These programs, listed below, are written in FORTRAN, ASSEMBLY, or PL/1 and are for use on an IBM main frame computer; source codes and available documentation are included upon request. In addition, 33 geodetic application programs are available for the HP-41CV and HP-97 programmable calculators.

Program	Purpose
TRAV10	Adjusts a horizontal geodetic network using observation equations and the method of least squares.
TRAVERSE	Adjusts a plane coordinate traverse using condition equations and the method of least squares.
UTMDIR	Computes Universal Transverse Mercator (UTM) coordinates from geodetic positions.
UTMINV	Computes geodetic positions from UTM coordinates
DIRECT	Computes the geodetic position of a station, given the azimuth and distance from another station.
INVERSE	Computes the distance between two stations and the forward and back azimuths, given the latitude and longitude for each station.
GPPCGP	Computes State plane coordinates from geodetic positions or vice versa.
VERTO2	Adjusts a vertical angle survey network using observation equations and the method of least squares.
SPCUTM	Computes UTM coordinates from State Plane Coordinates.
HAVAGO	Adjusts horizontal and vertical geodetic observations. The program adjusts 18 kinds of observations by
	the method of variation of parameters in three dimensions

COMPUTER PROGRAMS FOR GEODETIC APLICATIONS

LASSO Enables application programers to several existing subroutines for forming and solving very large, sp sets of normal equations. It provid method for reordering, solving, an computing a portion of the inverse sparse matrices.	use arse es a d e for
--	-----------------------------------

OBSEXAM Edits horizontal observation data in conformance with Input Formats and Specifications of the National Geodetic Survey Data Base (Blue Book).

OBSDECK Prepares data from a horizontal project in conformance with Input Formats and Specifications of the National Geodetic Survey Data Base (Blue Book) for input to programs TRAV10 and VERT02.

FIXIF Provides mass changes to horizontal observation data in conformance with Input Formats and Specifications of the National Geodetic Survey Data Base (Blue Book).

LHORDE Reformats and indexes alphabetically into a more readable format horizontal station descriptions given in the Input Formats and Specifications of the National Geodetic Survey Data Base (Blue Book).

OBSEDIT Edits vertical observation data in conformance with Input Formats and Specifications of the National Geodetic Survey Data Base (Blue Book).

LEVEL1 Adjusts vertical observation data using the method of least squares.

FIXIF Provides m observation Input Form the Nationo Base (Blue LHORDE Reformats

ndel environ obibera services statistics terri

and a property of the source o

and has bridged by December and Links

Federal Geodetic Control Committee Specifications

Survey Specifications and Data Base Formats

and The law log profile library costains and low log profile library costains we may as California, and subsidence is such as Houston. Toxus, The survey is mential in Federal cost reductor, sucher alls refere, good to a retwork maintenance, and back to a retwork maintenance, and back to a retwork maintenance, and back The interagency Federal Geodetic Control Committee (FGCC) establishes Federal specifications for geodetic surveys and prescribes formats for entering data into the national geodetic data base. Geodetic survey specifications for the United States are contained in two FGCC publications: Classification, Standards of Accuracy, and General Specifications of Geodetic Control Surveys (1974) and Specifications to support Classification, Standards of Accuracy, and General Specifications of Geodetic Control Surveys (1980).

Updated specifications reflecting new technology are being prepared. A third FGCC publication, Input Format and Specifications of the National Geodetic Survey Data Base (1980, 1983), is a three-volume user's guide, which gives instructions and specifications for submitting geodetic survey data for entry into the NGS geodetic data base and the subsequent adjustment and processing of the data for publication through the NGS geodetic data base management system. The FGCC publications (Exhibit 12) are used by Federal, State, and local agencies, and private surveying organizations that produce and use geodetic control data.

Exhibit 12.—A selection of Federal Geodetic Control Committee publications.

Crustal Movement Information

Exhibit 13 depicts crustal movement information gathered from special surveys performed by NGS to quantify and delineate movements of the Earth's crust, including associated investigations by the NGS Research and Development Laboratory, cooperative and research activities with the other NOAA components. Defense Mapping Agency, National Aeronautics and Space Administration, U.S. Geological Survey and some State agencies. NGS has periodically conducted horizontal and vertical control and gravimetric surveys to measure movement of the Earth's crust at geodetic stations in areas of seismic activity, regional uplift, and land subsidence. The leveling profile library contains historic leveling data for such seismically active areas as California, and subsidence areas such as Houston, Texas, The crustal movement information obtained from these surveys is essential to Federal programs in flood control, earthquake hazards reduction, nuclear site safety, geothermal energy development, geodetic control network maintenance, and basic ongoing research in the earth sciences.

Exhibit 13.—Publications documenting crustal movement investigations.

Polar Motion Information

ne MOALL Manuales (1996) en integral (1978) he MOS and are miblished in trado an prification lound, and other external redit, and are also indexed and stated array NGS library. Coast and Geodolic array Second Fablications and other base ture constanting geodetic surveying and modern are also ave table. Many of here outh calinations are available to the public terms.

r als and the foreign of the area Service and the original and archivel solution were the analysis for ministral of the controls, and the archive history will be data upon aptrallic request from these The POLARIS (POLar-motion Analysis by Radio Interferometric Surveying) network monitors the location of the Earth's axis of rotation using the method of Very Long Baseline Interferometry (VLBI). This method involves observations of extragalactic radio sources to determine polar motion and universal time. Exhibit 14 shows estimates of the X and Y components of the position of the pole, and formal uncertainties are tabulated according to observational dates. The nominal interval between entries is 5 days. The POLARIS Earth orientation information has applications in geodetic control network orientation, satellite and space geodesy requiring high accuracy, geodynamics research, climatology, and related geophysical and meteorological research.

> 1982 Polar Motion Parameter Determinations from VLBI Observations

Da	te	d	X	σx	T	σ	UT1-UTC	°UT1
- Y	-	u a	70.0	2.0	200 0		0 00206	0 00015
82	1	1	-19.2	2.0	309.0		0.00300	0.00015
82	1	14	-64.4	2.0	400.7		~.01240	.00015
82	1	20	-51.3	2.1	409.2		02717	.00017
82	1	28	-46.3	3.0	417.0		03828	.00023
82	2	2	-36.0	2.7	422.1		04866	.00023
82	2	11	-5.6	1.6	429.7	-	06812	.00012
82	2	18	6.9	2.0	434.5		08390	.00017
82	2	25	23.1	3.0	437.4		09816	.00026
82	3	4	44.8	2.8	439.7		11739	.00024
82	3	11	77.9	2.7	440.0		13446	.00023
82	3	25	92.2	2.4	435.4		16445	.00019
82	3	30	131.0	4.2	432.7		18070	.00037
82	4	8	111.1	2.7	425.6		20140	.00024
82	4	14	141.2	2.8	420.9		21872	.00024
82	4	27	146.0	4.4	404.3	-	25001	.00039
82	5	4	181.4	2.1	393.7		27074	.00017
82	5	11	199.8	2.3	381.1		28854	.00019
82	5	18	200.3	1.9	366.5	-	30080	.00015
82	6	3	226.1	2.3	326.9		33850	.00019
82	6	8	234.8	2.9	312.0		34869	.00025

Exhibit 14.—Polar motion data and Universal Time.

Geodetic Literature and Archival Record Services

wh between unicles is 6 days. The OLARS faith orientation referention has optimations in geodoby control netor days also and the and space product or days high sources, geodynamics seconds, of mitology, and related geopay ded and reservations research. The National Geodetic Information Center houses a Geodetic Reference Services Group that maintains a geodetic library. Included are NOAA Technical Publications in the NOS NGS subseries (Exhibit 15), which includes NOAA Technical Reports, NOAA Technical Memorandums, and NOAA Manuals. Articles authored by the NGS staff are published in trade and professional journals and other external media, and are also indexed and stored in the NGS library. Coast and Geodetic Survey Special Publications and other literature concerning geodetic surveying and geodesy are also available. Many of these publications are available to the public for a nominal charge.

In addition, the Geodetic Reference Services Group catalogs current and archival geodetic records, arranges for retrieval of these records, and researches historic geodetic data upon specific request from NOAA users, other agencies, and the public.

Exhibit 15.—Examples of NGS publications.

GEODETIC LITERATURE AND ARCHIVAL RECORD SERVICES

Geodetic Products and Services Information

Information on geodetic products and services is provided to users of geodetic data upon request. This marketing information is available from the National Geodetic Information Center and includes an automatic geodetic mailing service agreement, a fact sheet listing geodetic data prices, an irregularly issued periodical entitled NOAA Geodetic News (Exhibit 16), a booklet listing NGS publications and prices, and various brochures and pamphlets describing NGS functions and services.

Exhibit 16.—NGS brochure and NOAA Geodetic News.

Exhibit 17.—Location of mark maintenance engineers and State geodetic advisors.

NGS Extension Service

Technology Transfer and Consultation

Investigation and an the ploted arithmetic switters, sory long baseling with rears ory, leasted survey long systems are investigate and produces in write entry a will have a protocol of related with compaction by wellarithmetic Survey is stille forefract by antistic will developing newst charles by antistic will an another and by antistic will be a based by an and continue to provide accurace and another by base stille and antistic and and realize and another and an and another by a power of accurace and another by a power of accurace and another by a power of accurace and another by base and an an accurace and and continue to provide accurace and another by base states of accurace and accurace and accurace of accurace and accurace and accurace accurace and accurace and accurace accurace and accurace accurace accurace accurace and accurace accurace accurace accurace and accurace acc

The NGS extension service assists State and local governments in performing supplemental geodetic control surveys. The service includes mark maintenance and State geodetic advisor programs. Arrangements for extension services vary according to the requirements of the State or local agency. The mark maintenance program supports the NGS responsibility for establishing and assuring the accuracy and reliability of the Nation's geodetic control networks. Mark maintenance is carried out by 14 field engineers who are responsible for preserving geodetic marks. These engineers also provide liaison, training, and assistance to local, State, and Federal agencies. In turn, cooperation and volunteered assistance from other agencies, such as State highway departments, save endangered marks. Some States utilize the services of a geodetic advisor to provide liaison between the cooperating State and NGS. NGS provides these States with instructional guidance as to the best methods and procedures for performing geodetic surveys. The advisor program operates on a cost-sharing basis. Exhibit 17 depicts locations of the mark maintenance engineers, designated by 14 regions in the United States, and State geodetic advisors, located in States A-E. Recently, the States of Florida, Alaska, Mississippi, and Rhode Island have also agreed to participate in the State geodetic advisor program.

Special Purpose Geodetic Surveys

Future Products

Special purpose geodetic surveys are conducted to support scientific and engineering projects for NOAA and other agencies and institutions. The special projects usually have unique requirements, designs, and solutions and involve high precision measurements. Two recent examples of this type of service are: (1) a special survey performed at Stanford University's PEP storage ring (linear accelerator) in Palo Alto, involving the positioning of 12 instruments to millimeter accuracy. and (2) the special resurveys of geodetic networks along the San Andreas fault zone in California to detect and measure crustal motion.

New technologies such as the global positioning system, very long baseline interferometry, inertial surveying systems, laser leveling, and precise photogrammetric surveys will have a profound effect on the future of surveying, geodesy, and related earth sciences. The National Geodetic Survey is at the forefront in studying and developing new technologies which reflect the state-of-the-art in geodesy. As new technologies become operational, NGS will improve present products, generate new products and services, and continue to provide accurate and timely information to all users of geodetic data.